Метатеорія

(від Мета ...) теорія, що аналізує структуру, методи і властивості будь-якої іншої теорії - т. зв. предметної теорії, або об'єктною. Термін "М." осмислено вживається лише по відношенню до деякої конкретної предметної теорії; так, М. логіки називають металогіку (Див. металогіку), М. математики - метаматематиці (Див. Метаматематика); аналогічний сенс мають терміни "Метахіма", "метабіологія" і т. п. (за винятком "метафізики"). В принципі можна говорити про М. будь-якої наукової дисципліни, як дедуктивної, так і недедуктивних (наприклад, метатеоретической роль у відомому сенсі грає філософія); проте по-справжньому продуктивним поняття М. опиняється в застосуванні саме до дедуктивних наук: математиці, логіці і математизованим фрагментами природознавства і ін. наук (наприклад, лінгвістики). Більш того, фактичним об'єктом розгляду в М. виявляється, як правило, не сама по собі та чи інша змістовна наукова теорія, а її формальний аналог і експлікат - точне поняття числення (Див. Обчислення) (формальної системи (Див. Формальна система)) ; якщо ж підлягає дослідженню в М. теорія носить змістовний характер, то вона заздалегідь піддається формалізації (Див. Формалізація). Т. о. , Частина М., що вивчає структуру своєї предметної теорії, має справу з нею саме як з формальної системою, т.е. сприймає її елементи як позбавлені якого б то не було "змісту" (сенсу) чисто формальні Конструктивні об'єкти, строго ідентифікуються (або, навпаки, що розрізняються) між собою, з яких за чітко сформульованими правилами освіти будуються знакосочетаній, є "виразами" ( формулами) даної формальної системи. Ця частина М. - т. Зв. синтаксис - вивчає також дедуктивні засоби даної наочної теорії (див. Дедукція); в ній, зокрема, визначається поняття (формального) Докази для даної предметної теорії, а також більш загальне поняття виведення з даних посилок. Сама М., на відміну від предметної теорії, є теорія змістовна: характер використовуваних в ній засобів опису, міркування і докази може бути будь-яким спеціальним чином обумовлений і обмежений, але у всякому разі самі ці кошти суть змістовно розуміються елементи звичайного (природного) мови і "логіки здорового глузду". Основний зміст М. складають метатеореми (Див. Метатеореми), або "теореми про теореми". Прикладом синтаксичної метатеореми може служити теорема про дедукції, що встановлює зв'язок між поняттям виводимості (доказовою) в даній предметній теорії (наприклад, в обчисленні висловлювань або численні предикатів) і логічною операцією імплікації (Див. Імплікація), що входить в "алфавіт" даної предметної теорії. В коло інтересів М. входить також розгляд всіляких інтерпретацій (Див. Інтерпретація) досліджуваної формальної системи; відповідна частина (або аспект) М., що сприймає предметну теорію як Формалізована мова, називають семантикою (див. Логічна семантика).Прикладом семантичної метатеореми є теорема про повноту класичного числення висловів, згідно з якою для цього обчислення поняття доказової формули (формальної теореми) і формули, істинної при деякій "природною" його інтерпретації, збігаються. Багато понять М. (і пов'язані з ним метатеореми) носять «змішаний» характер: і синтаксичний, і семантичний. Таке, наприклад, найважливіше поняття несуперечності (Див. Несуперечність), яке визначається і як невиводимість в предметної теорії формального протиріччя (т. Е. Кон'юнкції (Див. Кон'юнкція) деякої формули і її заперечення (Див. Заперечення); т. Н. Внутрішня несуперечливість ), і як "відповідність" даної предметної теорії деякій її «природною» інтерпретації (т. н. зовнішня, або семантична, несуперечливість); збіг обох цих понять за обсягом є нетривіальний факт М., що відноситься, очевидно, і до синтаксису, і до семантики даної теорії. Класичним прикладом метатеореми, що зв'язує ряд найважливіших синтаксичних і семантичних понять, є теореми Геделя (Див. Гедель) про неповноту формальної арифметики (і містять її багатших логіко-математичних обчислень) і про неможливість доказу несуперечності широкого класу числень формалізуються в цих обчисленнях засобами. Поняття можливості розв'язання формальної теорії носить, навпаки, чисто синтаксичний характер, а поняття повноти (Див. Повнота) - переважно семантичний. М., звичайно, сама може бути формалізована і бути предметом вивчення деякій метаметатеоріі і т. Д. Поняття "М." вперше було висунуто Д. Гільбертом у зв'язку з його програмою обгрунтування класичної математики засобами створюваною його школою теорії доказів (метаматематики).Ряд найважливіших метатеоретических результатів (головним чином семантичного змісту) був отриманий А. Тарським (Див. Тарський). У розвиток ідей Тарського і Р. Карнапа, Х. Б. Каррі називає М. "епітеоріей", резервуючи термін "М." для деякого більш спеціального слововживання. Див. Також Аксіоматичний метод, Мотузки, Математичний формалізм. Літ. : Кліні С. К., Введення в метаматематику, пров. з англ. , М., 1957, гл. III-VIII, XIV, XV; Черч А., Введення в математичну логіку, пер. з англ. , Т. 1, М., 1960 (введення); його ж. Математична логіка, пер. з англ. , М., 1973; Каррі Х. Б., Підстави математичної логіки, пер з англ. , М., 1969, гл. 2-3. Ю. А. Гаст.

Велика радянська енциклопедія. - М.: Радянська енциклопедія. 1969-1978.

Популярні Пости

Рекомендуємо, 2018

Племінне господарство
Фінансовий словник

Племінне господарство

Племінне господарство Племінне господарство - тваринницьке господарство: - що має високопродуктивним стадом тварин певної породи, приплід від якого вирощується на плем'я; - проводить роботу по поліпшенню племінних і продуктивних якостей худоби; - постачає племінними тваринами тваринницькі ферми. Синоніми: племхозах Див.
Читати Далі
26399
Довідник ГОСТів

26399

ГОСТ 26399 {-84} Інструмент для холодновисадочних автоматів. Пуансони попередні. Конструкція і розміри. ОКС: 25. 120. 10 КГС: Г22 Інструмент і пристосування для холодної обробки тиском Дія: З 01. 07. 86 Змінено: ІКС 4/90 Примітка: см. зб. "ГОСТ 26394-84" Текст документа: ГОСТ 26399 "Інструмент для холодновисадочних автоматів.
Читати Далі
Мерсенна система рефлектора
Велика радянська енциклопедія

Мерсенна система рефлектора

Двухзеркальная система телескопа - Рефлектора , в якій фокуси двох (головного і вторинного ) увігнутих параболічних дзеркал суміщені. Паралельний пучок променів, що впав на велике (головне) дзеркало, сходиться до фокусу, перехоплюється вторинним дзеркалом ( рис. , а), встановленим за фокусом, і знову паралельним пучком, але вже більш вузького перетину, виходить через центральне отвір, просвердлений в головному дзеркалі.
Читати Далі
Цінні папери проектного позики
Фінансовий словник

Цінні папери проектного позики

Цінні папери проектного позики Цінні папери проектного позики - цінні папери, забезпечені декількома типами позик, застрахованих Федеральним управлінням житлового будівництва. По-англійськи: Project loan securities Див. також: Іпотечні цінні папери Проектні позики Фінансовий словник Фінам. .
Читати Далі
Оунасселькя
Велика радянська енциклопедія

Оунасселькя

(Ounasselkä) височина на С. -З. Фінляндії. Довжина близько 200 км , висота до 821 м (г. Палластунтурі). Складена переважно докембрийскими кристалічними і метаморфічними породами. Поверхня платообразная з окремими останцово вершинами і моренними грядами. Багато льодовикових озер. Соснові ліси, березове рідколісся.
Читати Далі
Гучно ОПЕРАЦІЇ
Фінансовий словник

Гучно ОПЕРАЦІЇ

Гучно ОПЕРАЦІЇ (open-mouth operations) Випадки, коли Федеральна резервна система (Federal Reserve System) США намагається проводити грошово-кредитну / монетарну політику (monetary policy) шляхом урядових заяв. Фінанси. Тлумачний словник. 2-е изд. - М.: "ИНФРА-М", Видавництво "Всесвіт". Брайен Батлер, Брайен Джонсон, Грем Сідуел і ін.
Читати Далі
3396
Довідник ГОСТів

3396

ГОСТ 3396 {-90} Ресори листові автотранспортних засобів. Загальні технічні умови. ОКС: 43. 040. 50 КГС: Д25 Автотракторні деталі, вузли і арматура Натомість: ГОСТ 3396-80 Дія: З 01. 01. 91 Примітка: з 01. 01. 2001 скасований на території РФ, діє ГОСТ Р 51585-2000 Текст документа: ГОСТ 3396 "Ресори листові автотранспортних засобів.
Читати Далі